Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Photodiagnosis Photodyn Ther ; 42: 103532, 2023 Jun.
Article En | MEDLINE | ID: mdl-36963645

BACKGROUND: Surface-enhanced Raman spectroscopy (SERS) is an efficient technique which has been used for the analysis of filtrate portions of serum samples of Hepatitis B (HBV) and Hepatitis C (HCV) virus. OBJECTIVES: The main reason for this study is to differentiate and compare HBV and HCV serum samples for disease diagnosis through SERS. Hepatitis B and hepatitis C disease biomarkers are more predictable in their centrifuged form as compared in their uncentrifuged form. For differentiation of SERS spectral data sets of hepatitis B, hepatitis C and healthy person principal component analysis (PCA) proved to be a helpful. Centrifugally filtered serum samples of hepatitis B and hepatitis C are clearly differentiated from centrifugally filtered serum samples of healthy individuals by using partial least square discriminant analysis (PLS-DA). METHODOLOGY: Serum sample of HBV, HCV and healthy patients were centrifugally filtered to separate filtrate portion for studying biochemical changes in serum sample. The SERS of these samples is performed using silver nanoparticles as substrates to identify specific spectral features of both viral diseases which can be used for the diagnosis and differentiation of these diseases. The purpose of centrifugal filtration of the serum samples of HBV and HCV positive and control samples by using filter membranes of 50 KDa size is to eliminate the proteins bigger than 50 KDa so that their contribution in the SERS spectrum is removed and disease related smaller proteins may be observed. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) are statistical tools which were used for the further validation of SERS. RESULTS: HBV and HCV centrifugally filtered serum sample were compared and biomarkers including (uracil, phenylalanine, methionine, adenine, phosphodiester, proline, tyrosine, tryptophan, amino acid, thymine, fatty acid, nucleic acid, triglyceride, guanine and hydroxyproline) were identified through PCA and PLS-DA. Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were used as a multivariate data analysis tool for the diagnosis of the characteristic SERS spectral features associated with both types of viral diseases. For the classification and differentiation of centrifugally filtered HBV, HCV, and control serum samples, Principal component analysis is found helpful. Moreover, PLS-DA can classify these two distinct sets of SERS spectral data with 0.90 percent specificity, 0.85 percent precision, and 0.83 percent accuracy. CONCLUSIONS: Surface enhanced Raman spectroscopy along with chemometric analysis like PCA and PLS-DA have been successfully differentiated HBV and HCV and healthy individuals' serum samples.


Hepatitis B , Hepatitis C , Metal Nanoparticles , Photochemotherapy , Humans , Metal Nanoparticles/chemistry , Silver/chemistry , Photochemotherapy/methods , Photosensitizing Agents , Discriminant Analysis , Hepatitis C/diagnosis , Spectrum Analysis, Raman/methods , Hepatitis B/diagnosis , Principal Component Analysis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122457, 2023 May 15.
Article En | MEDLINE | ID: mdl-36764165

Blood serum contains essential biochemical information which are used for early disease diagnosis. Blood serum consisted of higher molecular weight fractions (HMWF) and lower molecular weight fractions (LMWF). The disease biomarkers are lower molecular weight fraction proteins, and their contribution to disease diagnosis is suppressed due to higher molecular weight fraction proteins. To diagnose diabetes in early stages are difficult because of the presence of huge amount of these HMWF. In the current study, surface-enhanced Raman spectroscopy (SERS) are employed to diagnose diabetes after centrifugation of serum samples using Amicon ultra filter devices of 50 kDa which produced two fractions of whole blood serum of filtrate, low molecular weight fraction, and residue, high molecular weight fraction. Furthermore SERS is employed to study the LMW fractions of healthy and diseased samples. Some prominent SERS bands are observed at 725 cm-1, 842 cm-1, 1025 cm-1, 959 cm-1, and 1447 cm-1 due to small molecular weight proteins, and these biomarkers helped to diagnose the disease early stage. Moreover, chemometric techniques such as principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) are employed to check the potential of surface-enhanced Raman spectroscopy for the differentiation and classifications of the blood serum samples. SERS can be employed for the early diagnosis and screening of biochemical changes during type II diabetes.


Diabetes Mellitus, Type 2 , Serum , Humans , Spectrum Analysis, Raman/methods , Discriminant Analysis , Biomarkers , Principal Component Analysis
3.
Photodiagnosis Photodyn Ther ; 41: 103262, 2023 Mar.
Article En | MEDLINE | ID: mdl-36587860

BACKGROUND: Surface Enhanced Raman Spectroscopy (SERS) is a very promising and fast technique for studying drugs and for detecting chemical nature of a molecule and DNA interaction. In the current study, SERS is employed to check the interaction of different concentrations of n-propyl imidazole derivative ligand with salmon sperm DNA using silver nanoparticles as SERS substrates. OBJECTIVES: Multivariate data analysis technique like principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) are employed for the detailed analysis of the SERS spectral features associated with the mode of action of the imidazole derivative ligand with DNA. METHODOLOGY: Silver nanoparticles were used as a SERS substrate in DNA-drug interaction. Five different concentrations of ligands were interacted with DNA and mix with Ag-NPs as substrate. The SERS spectra of were acquired for all seven samples and processed using MATLAB. Additionally, PCA and PLS-DA were used to assessed the ability SERS to differentiate interaction of DNA-drug. RESULTS: Differentiating SERS features having changes in their peak position and intensities are observed including 629, 655, 791, 807, 859, 1337, 1377 and 1456 cm-1. These SERS features reveal that binding of ligand with DNA is electrostatic in nature, and have specificity to major groove where it forms GC-CG interstrand cross-linking with the DNA double helix. CONCLUSIONS: SERS give significant information regarding to Drug-DNA interaction mechanism, SERS spectra inferred the mode of action of anticancer compound that are imidazole in nature.


Metal Nanoparticles , Photochemotherapy , Animals , Male , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Salmon , Ligands , Semen , Photochemotherapy/methods , Photosensitizing Agents , Imidazoles
4.
Photodiagnosis Photodyn Ther ; 39: 102949, 2022 Sep.
Article En | MEDLINE | ID: mdl-35661826

BACKGROUND: Raman spectroscopy is able to analyze non-invasively, disease related to body fluids. OBJECTIVES: For the qualitative and quantitative analysis of HCV serum samples surface-enhanced Raman spectroscopy (SERS) based method is developed. METHOD: Surface-enhanced Raman spectroscopy (SERS) technique is employed for analysis of filtrate portions of blood serum samples of hepatitis C virus (HCV) infected patients and healthy ones by using 50 kDa centrifugal filter device. The filtrate portions of the serum obtained in this way contain proteins smaller than 50 kDa and removal of bigger size protein which allows to acquire SERS spectral features of smaller proteins more effectively which are probably associated with Hepatitis C infection. Moreover, SERS spectral features of the filtrates of different level of viral load including low, medium and high viral loads are compared with SERS spectral features of the filtrate portions of healthy/control serum samples. SERS spectral data sets of different samples are further analyzed by using multivariate data analysis techniques such as principal component analysis (PCA) and partial least square regression (PLSR). Some SERS spectral features are solely observed in the filtrate portions of the serum samples of hepatitis C and their intensities are increased as the level of viral load increases and might be used for HCV diagnosis. RESULTS: PCA was found helpful for differentiation of SERS spectral data sets of filtrate portions of the serum samples of hepatitis C and healthy persons. The PLSR model helped for the quantification of viral loads in the unknown serum samples with 99% accuracy.


Hepatitis C , Photochemotherapy , Hepacivirus , Hepatitis C/diagnosis , Humans , Photochemotherapy/methods , Principal Component Analysis , Serum , Spectrum Analysis, Raman/methods
...